RECIPES WITH
BACKBONE

Strategies to accelerate development
with Backbone.

Nick Gauthier & Chris Strom

Chapter 7. Collection View

7.1. Introduction

The Collection View is a pattern that describes how to render views within
views, specifically with a Collection holding many Models which is a
common occurrence in a Backbone application. However, this pattern can
easily be applied to any situation where you have a view that needs to
render a dynamic number of sub-views.

7.2. The Problem

In server-side applications, it is common to see routes that represent
many items of the same type. For example, the /appointments route might
display HTML for all of the appointments in the system.

Typically, this server-side code gathers up all appointments via a database
query. It then iterates over each record, rendering them as HTML in a
template. This is all well and good when the following conditions are true:

1. The server-side template library can handle iteration (or arbitrary code)
2. The generated page is not interactive

Unfortunately, neither of these conditions hold for a modern client-side
web application. Additionally, we encounter other obstacles:

1. Maintaining client-side templates quickly grows disorganized and
confusing when they are filled with logic and iteration

2. A lot of interactive code is concentrated into a few "master" views
instead of spread throughout the models

The first point is immediately apparent for anyone who has worked on a
large client-side application (otherwise, take our word for it!). The second
point is more subtle and will creep into your application over time.

57

Collection View

Consider our appointments application, which might consist of:
® Models.Appointments

® Collections.Appointments

® Views.Appointments

® Templates.Appointments

Think about what Templates.Appointments would look like. One of the first
lines will be the beginning of an iteration over individual appointments.
The majority of this view will be concerned with rendering an
individual appointment. This should immediately be an indicator that
Templates.Appointments is not doing what it was designed to do. A template
for rendering multiple appointments should only be concerned with
concepts like lists and ordering, not with the process of rendering
individual items.

Additionally, if we have a master AppointmentsView, its event bindings will
be on the list of appointments not on the individual appointments. This will
be much harder to implement naturally using Backbone’s event binding.

Furthermore, if an event is triggered signaling that an individual
appointment has changed and must be re-rendered, we need to re-render
the entire list of appointments. This is not only expensive, but can jar the
user’s view by breaking their scrolling position (if the list is long and they
are in the middle). It also means that a single view is listening to events
triggered by many models, which is another code smell.

In well designed server-side applications, Templates.Appointments

will simply loop over the appointments and immediately render a
Templates.Appointment template for each one, thus delegating that

work onto another class. This is what we want to do in Backbone. The
difference is that, in Backbone, it is much simpler and more natural to
have views call subviews, instead of having templates call subtemplates.

58

Collection View

7.3. The Solution

First, we need a new application structure:

® Models.Appointments

Collections.Appointments

® Views.Appointments

® Templates.Appointments

® Views.Appointment

® Templates.Appointment

We have added a second view and second template to handle
individual appointments. Let’s take a look at what the top level

Templates.Appointments and Views.Appointments might look like:

Templates.Appointments = _.template(
"<h2>Here is a list of Appointments</h2>"

)

59

Collection View

Views.Appointments = Backbone.View.extend({
template: Templates.Appointments,

initialize: function(options) {
this.collection.on('add', this.addOne, this);

iy

render: function() {
this.$el.html(this.template());
this.addAll();
return this;

iy

addAll: function() {
this.collection.each(this.addOne, this);

iy

addOne: function(model) {
view = new Views.Appointment({model: model});
view.render();
this.$el.append(view.el);
model.on('remove', view.remove, view);
}
1)

$(function() {
// Create a collection
var appointments = new Collections.Appointments([
{title: 'Doctor Appointment', date: '2011-01-04'},
{title: 'Birthday Party',6 date: '2011-01-07'},
{title: 'Book Club', date: '2011-01-14'}

1);

// Create our top level view attached to the dom
new Views.Appointments({

collection: appointments, el: $('#appointments')
}).render();

1)

Here is what views.Appointments is responsible for:

60

Collection View

1. Rendering its own template (the template data not relevant to individual
appointments)

2. Iterating over Collections.Appointments

3. Creating new Views.Appointment when a new appointment is added to the
collection and appending that view's DOM element to its own

4. Asking the view to remove itself when the model is removed from the
collection

More importantly, note what views.Appointments is not responsible for:
1. Rendering individual appointments

2. Listening to events on individual appointments

3. Updating the individual appointment view

4. Removing the view when a model is destroyed

Now that we have that sorted out, let’s look at Templates.Appointment and
Views.Appointment:

Templates.Appointment = _.template(
"<div class='title'>{{ title }}</div>" +
"<div class='date'>{{ date }}</div>"

)

Warning

Try to keep javascript code out of templates. It is a good habit to
pass a JSON-style object to a template, not pass a full model to

a template. The key point here is to pass key value pairs of JSON
primitives like integers and strings, and not expect functions to
be available. Avoid iteration by doing the iteration in the view and
creating subviews. Conditionals are subjective, if they are short it
is OK, but as they grow, consider subtemplates or subviews.

61

Collection View

Views.Appointment = Backbone.View.extend({
template: Templates.Appointment,

initialize: function(options) {
this.model.on('change', this.render, this);
this.model.on('destroy', this.remove, this);

iy

render: function() {
this.$el.html(this.template(this.model.toJSON()));
return this;

}
1)

Here is what views.Appointment is responsible for:

1. Rendering an individual appointment

2. Updating the view when the appointment changes

3. Removing the view when the appointment is destroyed

An interesting distinction between the destroy and remove events can be
observed here. Both are causing the same effect in the view and in the
DOM, but they are very different events!

The destroy event occurs when the model is deleted from the persistence
system (the server, or client storage, etc.). For example, we could have a
button on our view called "Delete". Or, more importantly, there could
be a button on an entirely different part of our application that deletes
models.

Consider a side-panel that has a button called "Remove all read
appointments" that only removes appointment models if they have the
read attribute set. We could easily say, "when the delete button is clicked,
remove this element". If we do that, we would have to do that for every
instance that a model is deleted in some way and would need to hook

it up to every view that displays that model. The power of events in

62

Collection View

Backbone is that, by binding to relevant events, we can avoid this
duplication.

We also need to be aware of remove actions, because we may be
maintaining multiple collections with the same set of models

in them. Consider if we had all our appointments in a global
MyApplication.Appointments, but then we created two sub-collections:
MyApplication.ReadAppointments and MyApplication.UnreadAppointments.
Any time a Model.Appointment was marked as read or unread, we move

it from one collection to the other. In memory, those are the same
Model.Appointment in the top-level MyApplication.Appointments and in the
sub-collections.

If we had a views.Appointments for each of the sub-collections, we need to
remove the view elements on a remove event, but the model is not deleted,
just removed from the collection. Since this is a Collection View we are
representing the state of the collection, and must modify the view to
mirror the collection’s state.

7 J
Always try to use the most appropriate event when binding to

an action. Don'’t see the right event? We will cover firing and
listening to custom events in a later chapter.

7.4. Conclusion

The Single Responsibility Principle is just as important in client-side
Javascript as it is in server-side code. It is an indication of good, object-
oriented design that each entity is responsible for a single task. The
Collection View divides up the tasks of iteration, interactivity, and output
into separate objects, each with their own simple goals.

63

