

57

Chapter 7. Collection View

7.1. Introduction
The Collection View is a pattern that describes how to render views within
views, specifically with a Collection holding many Models which is a
common occurrence in a Backbone application. However, this pattern can
easily be applied to any situation where you have a view that needs to
render a dynamic number of sub-views.

7.2. The Problem
In server-side applications, it is common to see routes that represent
many items of the same type. For example, the +"%%��������� route might
display HTML for all of the appointments in the system.

Typically, this server-side code gathers up all "%%��������� via a database
query. It then iterates over each record, rendering them as HTML in a
template. This is all well and good when the following conditions are true:

1. The server-side template library can handle iteration (or arbitrary code)

2. The generated page is not interactive

Unfortunately, neither of these conditions hold for a modern client-side
web application. Additionally, we encounter other obstacles:

1. Maintaining client-side templates quickly grows disorganized and
confusing when they are filled with logic and iteration

2. A lot of interactive code is concentrated into a few "master" views
instead of spread throughout the models

The first point is immediately apparent for anyone who has worked on a
large client-side application (otherwise, take our word for it!). The second
point is more subtle and will creep into your application over time.

Collection View

58

Consider our "%%��������� application, which might consist of:

• 0�
���
�%%���������

• I����$�����
�%%���������

• J��&�
�%%���������

• 1��%�"���
�%%���������

Think about what 1��%�"���
�%%��������� would look like. One of the first
lines will be the beginning of an iteration over individual "%%���������.
The majority of this view will be concerned with rendering an
individual ��������
��. This should immediately be an indicator that
1��%�"���
�%%��������� is not doing what it was designed to do. A template
for rendering multiple appointments should only be concerned with
concepts like lists and ordering, not with the process of rendering
individual items.

Additionally, if we have a master �%%���������J��&, its event bindings will
be on the list of appointments not on the individual appointments. This will
be much harder to implement naturally using Backbone’s event binding.

Furthermore, if an event is triggered signaling that an individual
"%%�������� has changed and must be re-rendered, we need to re-render
the entire list of "%%���������. This is not only expensive, but can jar the
user’s view by breaking their scrolling position (if the list is long and they
are in the middle). It also means that a single view is listening to events
triggered by many models, which is another code smell.

In well designed server-side applications, 1��%�"���
�%%���������
will simply loop over the "%%��������� and immediately render a
1��%�"���
�%%�������� template for each one, thus delegating that
work onto another class. This is what we want to do in Backbone. The
difference is that, in Backbone, it is much simpler and more natural to
have views call subviews, instead of having templates call subtemplates.

Collection View

59

7.3. The Solution

First, we need a new application structure:

• 0�
���
�%%���������

• I����$�����
�%%���������

• J��&�
�%%���������

• 1��%�"���
�%%���������

• ��
�����������
��

• �
��	��
����������
��

We have added a second view and second template to handle
individual appointments. Let’s take a look at what the top level
1��%�"���
�%%��������� and J��&�
�%%��������� might look like:

1��%�"���
�%%����������4�	
���%�"���

��,E�(.@�������"�������6��%%���������E+�(.,

��

Collection View

60

J��&�
�%%����������4�H"$'����
J��&
�G���
��

�����%�"����1��%�"���
�%%����������

�������"��L�������������%��������

�����
��
$����$����
����"

����
��
"

<�����
����

����

�����
����������������

�����
��
���
������
��
���%�"������

�����
��
"

������

�����
������
���

����

��"

�����������������

�����
��
$����$����
�"$���
��
"

<�����
����

����

��"

<���������������
�����

�������&�4��
��J��&�
�%%������������
������
�����

�������&
���
�����

�����
��
���
"%%��
����&
����

������
��
����������������&
�����������&��

���

���

��������������

��		�+���
����������
���

������"%%����������4��
��I����$�����
�%%����������

�������������>�$�����%%�����������
"�����()**�)*�)7���

�������������H����
"5�X"��5���
"�����()**�)*�):���

�������������H��'�I������
"�����()**�)*�*7��

��!��

��		�+���
������
������������&��

������
��
������

���
��J��&�
�%%�����������

����$����$������"%%������������������C"%%�����������

����
���
�����

���

Here is what J��&�
�%%��������� is responsible for:

Collection View

62

J��&�
�%%���������4�H"$'����
J��&
�G���
��

�����%�"����1��%�"���
�%%���������

�������"��L�������������%��������

�����
��
��
��
����$�"�������
��
���
�����
����

�����
��
��
��
����
�����5����
��
���������
����

����

�����
����������������

�����
��
���
������
��
���%�"����
��
��
��
��;/<=�����

�����
������
���

���

��

Here is what J��&�
�%%�������� is responsible for:

1. Rendering an individual "%%��������

2. Updating the view when the "%%�������� changes

3. Removing the view when the "%%�������� is destroyed

An interesting distinction between the
�����5 and ������ events can be
observed here. Both are causing the same effect in the view and in the
DOM, but they are very different events!

The
�����5 event occurs when the model is deleted from the persistence
system (the server, or client storage, etc.). For example, we could have a
button on our view called "Delete". Or, more importantly, there could
be a button on an entirely different part of our application that deletes
models.

Consider a side-panel that has a button called "Remove all read
appointments" that only removes "%%�������� models if they have the
��"
 attribute set. We could easily say, "when the delete button is clicked,
remove this element". If we do that, we would have to do that for every
instance that a model is deleted in some way and would need to hook
it up to every view that displays that model. The power of events in

